Role of the CD45 (T-200) molecule in anti-CD3-triggered T cell-mediated cytotoxicity

Typeset version

 

TY  - JOUR
  - Deem, R. L.,Shanahan, F.,Niederlehner, A.,Targan, S. R.
  - 1988
  - November
  - Cell Immunolcell Immunol
  - Role of the CD45 (T-200) molecule in anti-CD3-triggered T cell-mediated cytotoxicity
  - Validated
  - ()
  - 117
  - 11
  - 99
  - 110
  - NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.
  - 0008-8749 (Print) 0008-87
DA  - 1988/11
ER  - 
@article{V280546198,
   = {Deem,  R. L. and Shanahan,  F. and Niederlehner,  A. and Targan,  S. R. },
   = {1988},
   = {November},
   = {Cell Immunolcell Immunol},
   = {Role of the CD45 (T-200) molecule in anti-CD3-triggered T cell-mediated cytotoxicity},
   = {Validated},
   = {()},
   = {117},
   = {11},
  pages = {99--110},
   = {{NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.}},
  issn = {0008-8749 (Print) 0008-87},
  source = {IRIS}
}
AUTHORSDeem, R. L.,Shanahan, F.,Niederlehner, A.,Targan, S. R.
YEAR1988
MONTHNovember
JOURNAL_CODECell Immunolcell Immunol
TITLERole of the CD45 (T-200) molecule in anti-CD3-triggered T cell-mediated cytotoxicity
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME117
ISSUE11
START_PAGE99
END_PAGE110
ABSTRACTNK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.NK-depleted human peripheral blood lymphocytes can be modulated with anti-CD3 to kill certain targets during 3-hr cytotoxicity assays. When triggered by anti-CD3 antibody, these effector T cells killed only NK-sensitive targets, such as K562 and HEL 92.1.7, and NK-resistant targets, such as Daudi, whose killing is inhibited by anti-CD45 (T-200) monoclonal antibodies, such as 13.3. NK-sensitive targets, MOLT-4, U266/AF10, Jurkat, and CCFR-CEM, and 10 NK-resistant cell lines, including Raji, IM-9, U698, U937, and GM-1056, whose killing is not inhibited by anti-CD45 monoclonal antibodies, were not killed by alpha-CD3-T effectors, suggesting that the CD45 molecule may be involved in the killing process. Anti-CD3-triggered T cell killing of target cells was inhibited greater than 95% by the monoclonal antibody 13.3. This inhibition of cytotoxicity by 13.3 was not due to competition of this IgG1 antibody for Fc receptor binding site on the target cell, since the IgG1 monoclonal antibody anti-beta 2-microglobulin did not block cytotoxicity. Single cell assays and calcium pulse assays showed that CD45 is involved in a postbinding, pre-calcium-dependent stage, similar to that shown for NK cytotoxicity. There was a relative shift of importance of different epitopes of CD45 in anti-CD3-T cytotoxicity compared to NK cytotoxicity. Anti-CD45 antibodies which bind to the C terminus end of the molecule played a more important role in anti-CD3-T cytotoxicity than NK cytotoxicity. Thus, a subset of T cells exists that exhibits anti-CD3-triggered non-MHC-restricted killing of certain NK-sensitive and NK-resistant targets in association with a CD45 molecule which is functionally different from the NK CD45 molecule.
PUBLISHER_LOCATION
ISBN_ISSN0008-8749 (Print) 0008-87
EDITION
URL
DOI_LINK
FUNDING_BODY
GRANT_DETAILS