Natural killer cells protect against mucosal and systemic infection with the enteric pathogen Citrobacter rodentium

Typeset version

 

TY  - JOUR
  - Hall, L. J.,Murphy, C. T.,Hurley, G.,Quinlan, A.,Shanahan, F.,Nally, K.,Melgar, S.
  - 2013
  - February
  - Infect Immuninfect Immun
  - Natural killer cells protect against mucosal and systemic infection with the enteric pathogen Citrobacter rodentium
  - Validated
  - ()
  - 81
  - 22
  - 460
  - 469
  - Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.
  - 0019-95670019-9567
DA  - 2013/02
ER  - 
@article{V280546545,
   = {Hall,  L. J. and Murphy,  C. T. and Hurley,  G. and Quinlan,  A. and Shanahan,  F. and Nally,  K. and Melgar,  S. },
   = {2013},
   = {February},
   = {Infect Immuninfect Immun},
   = {Natural killer cells protect against mucosal and systemic infection with the enteric pathogen Citrobacter rodentium},
   = {Validated},
   = {()},
   = {81},
   = {22},
  pages = {460--469},
   = {{Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.}},
  issn = {0019-95670019-9567},
  source = {IRIS}
}
AUTHORSHall, L. J.,Murphy, C. T.,Hurley, G.,Quinlan, A.,Shanahan, F.,Nally, K.,Melgar, S.
YEAR2013
MONTHFebruary
JOURNAL_CODEInfect Immuninfect Immun
TITLENatural killer cells protect against mucosal and systemic infection with the enteric pathogen Citrobacter rodentium
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME81
ISSUE22
START_PAGE460
END_PAGE469
ABSTRACTNatural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.Natural killer (NK) cells are traditionally considered in the context of tumor surveillance and viral defense, but their role in bacterial infections, particularly those caused by enteric pathogens, is less clear. C57BL/6 mice were orally gavaged with Citrobacter rodentium, a murine pathogen related to human diarrheagenic Escherichia coli. We used polyclonal anti-asialo GM1 antibody to actively deplete NK cells in vivo. Bioluminescent imaging and direct counts were used to follow infection. Flow cytometry and immunofluorescence microscopy were used to analyze immune responses. During C. rodentium infection, NK cells were recruited to mucosal tissues, where they expressed a diversity of immune-modulatory factors. Depletion of NK cells led to higher bacterial loads but less severe colonic inflammation, associated with reduced immune cell recruitment and lower cytokine levels. NK cell-depleted mice also developed disseminated systemic infection, unlike control infected mice. NK cells were also cytotoxic to C. rodentium in vitro.
PUBLISHER_LOCATION
ISBN_ISSN0019-95670019-9567
EDITION
URL
DOI_LINK
FUNDING_BODY
GRANT_DETAILS