Inherent control of growth, morphology and defect formation in germanium nanowires

Typeset version

 

TY  - JOUR
  - Biswas, S.; Singha, A.; Morris, M. A.; Holmes, J. D.
  - 2012
  - November
  - Nanoletters
  - Inherent control of growth, morphology and defect formation in germanium nanowires
  - Published
  - ()
  - 12
  - 5654
  - 5663
  - The use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of AuxAg1−x alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111}stacking faults in the seed particles and the subsequent growth of ⟨112⟩-oriented nanowires with radial twins through a defecttransfer mechanism, with the highest number twinned Ge nanowires obtained using Ag0.75Au0.25 growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.
  - http://pubs.acs.org/journal/nalefd
DA  - 2012/11
ER  - 
@article{V179566481,
   = {Biswas, S. and  Singha, A. and  Morris, M. A. and  Holmes, J. D.},
   = {2012},
   = {November},
   = {Nanoletters},
   = {Inherent control of growth, morphology and defect formation in germanium nanowires},
   = {Published},
   = {()},
   = {12},
  pages = {5654--5663},
   = {{The use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of AuxAg1−x alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111}stacking faults in the seed particles and the subsequent growth of ⟨112⟩-oriented nanowires with radial twins through a defecttransfer mechanism, with the highest number twinned Ge nanowires obtained using Ag0.75Au0.25 growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.}},
   = {http://pubs.acs.org/journal/nalefd},
  source = {IRIS}
}
AUTHORSBiswas, S.; Singha, A.; Morris, M. A.; Holmes, J. D.
YEAR2012
MONTHNovember
JOURNAL_CODENanoletters
TITLEInherent control of growth, morphology and defect formation in germanium nanowires
STATUSPublished
TIMES_CITED()
SEARCH_KEYWORD
VOLUME12
ISSUE
START_PAGE5654
END_PAGE5663
ABSTRACTThe use of bimetallic alloy seeds for growing one-dimensional nanostructures has recently gained momentum among researchers. The compositional flexibility of alloys provides the opportunity to manipulate the chemical environment, reaction kinetics, and thermodynamic behavior of nanowire growth, in both the eutectic and the subeutectic regimes. This Letter describes for the first time the role of AuxAg1−x alloy nanoparticles in defining the growth characteristics and crystal quality of solid-seeded Ge nanowires via a supercritical fluid growth process. The enhanced diffusivity of Ge in the alloy seeds, compared to pure Ag seeds, and slow interparticle diffusion of the alloy nanoparticles allows the realization of high-aspect ratio nanowires with diameters below 10 nm, via a seeded bottom-up approach. Also detailed is the influence the alloyed seeds have on the crystalline features of nanowires synthesized from them, that is, planar defects. The distinctive stacking fault energies, formation enthalpies, and diffusion chemistries of the nanocrystals result in different magnitudes of {111}stacking faults in the seed particles and the subsequent growth of ⟨112⟩-oriented nanowires with radial twins through a defecttransfer mechanism, with the highest number twinned Ge nanowires obtained using Ag0.75Au0.25 growth seeds. Employing alloy nanocrystals for intrinsically dictating the growth behavior and crystallinity of nanowires could open up the possibility of engineering nanowires with tunable structural and physical properties.
PUBLISHER_LOCATION
ISBN_ISSN
EDITION
URLhttp://pubs.acs.org/journal/nalefd
DOI_LINK
FUNDING_BODY
GRANT_DETAILS