Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins

Typeset version

 

TY  - JOUR
  - Ruth*, A. A.,Lynch, K. T.
  - 2008
  - Unknown
  - Physical Chemistry Chemical Physics
  - Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins
  - Validated
  - ()
  - 10
  - 47
  - 7098
  - 7108
  - An improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.An improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.
  - 1463-90761463-9076
  - ://000261741900006 ://000261741900006
DA  - 2008/NaN
ER  - 
@article{V67924396,
   = {Ruth*,  A. A. and Lynch,  K. T. },
   = {2008},
   = {Unknown},
   = {Physical Chemistry Chemical Physics},
   = {Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins},
   = {Validated},
   = {()},
   = {10},
   = {47},
  pages = {7098--7108},
   = {{An improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.An improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.}},
  issn = {1463-90761463-9076},
   = {://000261741900006 ://000261741900006},
  source = {IRIS}
}
AUTHORSRuth*, A. A.,Lynch, K. T.
YEAR2008
MONTHUnknown
JOURNAL_CODEPhysical Chemistry Chemical Physics
TITLEIncoherent broadband cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins
STATUSValidated
TIMES_CITED()
SEARCH_KEYWORD
VOLUME10
ISSUE47
START_PAGE7098
END_PAGE7108
ABSTRACTAn improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.An improvement of conventional attenuated total reflection (ATR) spectroscopy is demonstrated by applying an incoherent broadband light source (short-arc Xe-lamp) in a cavity-enhanced evanescent-wave absorption method. With this novel approach the absorption spectra of several metallo-octaethyl porphyrins (palladium (PdOEP), platinum (PtOEP) and zinc (ZnOEP)) in thin acetone solution layers and on a fused silica (FS) surface are studied between approximate to 390 and 625 nm. The time dependence of the evaporation process of the solution on the FS surface is described. The maximum sensitivity of the setup is estimated at approximately 2 x 10(-5) per pass, which translates into a minimal detectable surface density of less than 2 x 10(-3) monolayers for the porphyrins studied (based on the strong absorption in the Soret bands). Changes of surface and solution spectra are characterised and discussed on the basis of observed band broadenings and spectral shifts. For Pd- and PtOEP the changes of spectral feature can be interpreted with respect to J-aggregate formation supported by polarization dependent measurements. The reason for an observed blue-shift of ca. 10 nm for the Soret band in ZnOEP in combination with a large red-shift of the Q-bands (11 nm for Q1 and 18 nm for Q2) is discussed.
PUBLISHER_LOCATION
ISBN_ISSN1463-90761463-9076
EDITION
URL://000261741900006 ://000261741900006
DOI_LINK
FUNDING_BODY
GRANT_DETAILS