The FliK protein and flagellar hook-length control

Typeset version

 

TY  - JOUR
  - Book Reviews
  - Waters, RC,O'Toole, PW,Ryan, KA
  - 2007
  - May
  - The FliK protein and flagellar hook-length control
  - Validated
  - 1
  - ()
  - FliK bacteria motility flagella type III secretion III EXPORT APPARATUS ENTERICA SEROVAR TYPHIMURIUM BASAL BODY COMPLEX SALMONELLA-TYPHIMURIUM ESCHERICHIA-COLI SUBSTRATE-SPECIFICITY HELICOBACTER-PYLORI BACTERIAL FLAGELLA ELECTRON CRYOMICROSCOPY YERSINIA-ENTEROCOLITICA
  - The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two- component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control'' protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.
  - 769
  - 780
  - DOI 10.1110/ps.072785407
DA  - 2007/05
ER  - 
@review{V160957449,
   = {Book Reviews},
   = {Waters,  RC and O'Toole,  PW and Ryan,  KA },
   = {2007},
   = {May},
   = {The FliK protein and flagellar hook-length control},
   = {Validated},
   = {1},
   = {()},
   = {FliK bacteria motility flagella type III secretion III EXPORT APPARATUS ENTERICA SEROVAR TYPHIMURIUM BASAL BODY COMPLEX SALMONELLA-TYPHIMURIUM ESCHERICHIA-COLI SUBSTRATE-SPECIFICITY HELICOBACTER-PYLORI BACTERIAL FLAGELLA ELECTRON CRYOMICROSCOPY YERSINIA-ENTEROCOLITICA},
   = {{The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two- component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control'' protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.}},
  pages = {769--780},
   = {DOI 10.1110/ps.072785407},
  source = {IRIS}
}
OTHER_PUB_TYPEBook Reviews
AUTHORSWaters, RC,O'Toole, PW,Ryan, KA
YEAR2007
MONTHMay
TITLEThe FliK protein and flagellar hook-length control
RESEARCHER_ROLE
STATUSValidated
PEER_REVIEW1
TIMES_CITED()
SEARCH_KEYWORDFliK bacteria motility flagella type III secretion III EXPORT APPARATUS ENTERICA SEROVAR TYPHIMURIUM BASAL BODY COMPLEX SALMONELLA-TYPHIMURIUM ESCHERICHIA-COLI SUBSTRATE-SPECIFICITY HELICOBACTER-PYLORI BACTERIAL FLAGELLA ELECTRON CRYOMICROSCOPY YERSINIA-ENTEROCOLITICA
REFERENCE
ABSTRACTThe bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two- component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control'' protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.
PUBLISHER_LOCATION
PUBLISHER
EDITORS
ISBN_ISSN
EDITION
URL
START_PAGE769
END_PAGE780
DOI_LINKDOI 10.1110/ps.072785407
FUNDING_BODY
GRANT_DETAILS